3.3.5 \(\int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [205]

Optimal. Leaf size=139 \[ \frac {2 (-1)^{3/4} a^{5/2} \text {ArcTan}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}} \]

[Out]

2*(-1)^(3/4)*a^(5/2)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+(4+4*I)*a^(5/2)*ar
ctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d-2*a^2*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(
1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3634, 3682, 3625, 211, 3680, 65, 223, 209} \begin {gather*} \frac {2 (-1)^{3/4} a^{5/2} \text {ArcTan}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(3/2),x]

[Out]

(2*(-1)^(3/4)*a^(5/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((4 + 4*
I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a^2*Sqrt[a + I*a*T
an[c + d*x]])/(d*Sqrt[Tan[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3634

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-a^2)*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x]
 + Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(b*c*(
m - 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /;
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && Lt
Q[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {3}{2}}(c+d x)} \, dx &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-2 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {3 i a^2}{2}+\frac {1}{2} a^2 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-(i a) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx+\left (4 i a^2\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {\left (i a^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}+\frac {\left (8 a^4\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {\left (2 i a^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=\frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {\left (2 i a^3\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {2 (-1)^{3/4} a^{5/2} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.38, size = 215, normalized size = 1.55 \begin {gather*} -\frac {i \sqrt {2} a^3 e^{i (c+d x)} \left (2 e^{i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}}-4 \left (-1+e^{2 i (c+d x)}\right ) \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )+\sqrt {2} \left (-1+e^{2 i (c+d x)}\right ) \tanh ^{-1}\left (\frac {\sqrt {2} e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right ) \sqrt {\tan (c+d x)}}{d \left (-1+e^{2 i (c+d x)}\right )^{3/2} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(3/2),x]

[Out]

((-I)*Sqrt[2]*a^3*E^(I*(c + d*x))*(2*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))] - 4*(-1 + E^((2*I)*(c + d*
x)))*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]] + Sqrt[2]*(-1 + E^((2*I)*(c + d*x)))*ArcTanh[(Sqr
t[2]*E^(I*(c + d*x)))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Sqrt[Tan[c + d*x]])/(d*(-1 + E^((2*I)*(c + d*x)))^(3/2)
*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 387 vs. \(2 (112 ) = 224\).
time = 0.19, size = 388, normalized size = 2.79

method result size
derivativedivides \(\frac {\left (-i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )-\ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )-4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2}}{d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(388\)
default \(\frac {\left (-i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )-\ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )-4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2}}{d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(388\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x
+c))/(tan(d*x+c)+I))*a*tan(d*x+c)-I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/
2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)-ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2
)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*2^(1/2)*a*tan(d*x+c)-4*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x
+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)-2*(a*tan(d*x+c)*(1+I*tan(d*x
+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2))*(a*(1+I*tan(d*x+c)))^(1/2)*a^2/tan(d*x+c)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d
*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)/tan(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 626 vs. \(2 (105) = 210\).
time = 0.38, size = 626, normalized size = 4.50 \begin {gather*} -\frac {4 \, \sqrt {2} {\left (i \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} + i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + \sqrt {\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + i \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right ) - \sqrt {\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - i \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right ) - \sqrt {\frac {4 i \, a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (\sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + i \, \sqrt {\frac {4 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{a^{2}}\right ) + \sqrt {\frac {4 i \, a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (\sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - i \, \sqrt {\frac {4 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{a^{2}}\right )}{2 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-1/2*(4*sqrt(2)*(I*a^2*e^(3*I*d*x + 3*I*c) + I*a^2*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I
*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt(32*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log(1/4*
(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)
/(e^(2*I*d*x + 2*I*c) + 1)) + I*sqrt(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2) - sqrt(32*I*a^5/d^
2)*(d*e^(2*I*d*x + 2*I*c) - d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c)
+ 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - I*sqrt(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e
^(-I*d*x - I*c)/a^2) - sqrt(4*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a
^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + I*sqrt(4*
I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2) + sqrt(4*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(
2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I
*d*x + 2*I*c) + 1)) - I*sqrt(4*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2))/(d*e^(2*I*d*x + 2*I*c) - d
)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(5/2)/tan(d*x+c)**(3/2),x)

[Out]

Integral((I*a*(tan(c + d*x) - I))**(5/2)/tan(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.Non regu
lar value [

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(3/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(3/2), x)

________________________________________________________________________________________